Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.12.15.520569

ABSTRACT

The continued evolution of the SARS-CoV-2 Omicron variant has led to the emergence of numerous sublineages with different patterns of evasion from neutralizing antibodies. We investigated neutralizing activity in immune sera from individuals vaccinated with SARS-CoV-2 wild-type spike (S) glycoprotein-based COVID-19 mRNA vaccines after subsequent breakthrough infection with Omicron BA.1, BA.2, or BA.4/BA.5 to study antibody responses against sublineages of high relevance. We report that exposure of vaccinated individuals to infections with Omicron sublineages, and especially with BA.4/BA.5, results in a boost of Omicron BA.4.6, BF.7, BQ.1.1, and BA.2.75 neutralization, but does not efficiently boost neutralization of sublineages BA.2.75.2 and XBB. Accordingly, we found in in silico analyses that with occurrence of the Omicron lineage a large portion of neutralizing B-cell epitopes were lost, and that in Omicron BA.2.75.2 and XBB less than 12% of the wild-type strain epitopes are conserved. In contrast, HLA class I and class II presented T-cell epitopes in the S glycoprotein were highly conserved across the entire evolution of SARS-CoV-2 including Alpha, Beta, and Delta and Omicron sublineages, suggesting that CD8+ and CD4+ T-cell recognition of Omicron BQ.1.1, BA.2.75.2, and XBB may be largely intact. Our study suggests that while some Omicron sublineages effectively evade B-cell immunity by altering neutralizing antibody epitopes, S protein-specific T-cell immunity, due to the very nature of the polymorphic cell-mediated immune, response is likely to remain unimpacted and may continue to contribute to prevention or limitation of severe COVID-19 manifestation.


Subject(s)
COVID-19 , Breakthrough Pain
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.09.21.508818

ABSTRACT

The SARS-CoV-2 Omicron variant and its sublineages show pronounced viral escape from neutralizing antibodies elicited by vaccination or prior SARS-CoV-2 variant infection owing to over 30 amino acid alterations within the spike (S) glycoprotein. We and others have recently reported that breakthrough infection of vaccinated individuals with Omicron sublineages BA.1 and BA.2 are associated with distinct patterns of cross-neutralizing activity against SARS-CoV-2 variants of concern (VOCs). BA.2 breakthrough infection mediated overall stronger cross-neutralization of BA.2 and its descendants (BA.2.12.1, BA.4, and BA.5) compared to BA.1 breakthrough infection. Here we characterized the effect of Omicron BA.4/BA.5 S glycoprotein exposure on the magnitude and breadth of the neutralizing antibody response upon breakthrough infection in vaccinated individuals and in mice upon booster vaccination. We show that immune sera from triple mRNA-vaccinated individuals with subsequent Omicron BA.4/BA.5 breakthrough infection display broad and robust neutralizing activity against Omicron BA.1, BA.2, BA.2.12.1, and BA.4/BA.5. Administration of a prototypic BA.4/BA.5-adapted mRNA booster vaccine to mice following SARS-CoV-2 wild-type strain-based primary immunization is associated with similarly broad neutralizing activity. Immunization of naive mice with a bivalent mRNA vaccine (wild-type + Omicron BA.4/BA.5) induces strong and broad neutralizing activity against Omicron VOCs and previous variants. These findings suggest that when administered as boosters, mono- and bivalent Omicron BA.4/BA.5-adapted vaccines may enhance neutralization breadth, and in a bivalent format may also have the potential to confer protection to individuals with no pre-existing immunity against SARS-CoV-2.


Subject(s)
Severe Acute Respiratory Syndrome , Breakthrough Pain
3.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.08.02.502461

ABSTRACT

Recently, we reported that BNT162b2-vaccinated individuals after Omicron BA.1 breakthrough infection have strong serum neutralizing activity against Omicron BA.1, BA.2, and previous SARS-CoV-2 variants of concern (VOCs), yet less against the highly contagious Omicron sublineages BA.4 and BA.5 that have displaced previous variants. As the latter sublineages are derived from Omicron BA.2, we characterized serum neutralizing activity of COVID-19 mRNA vaccine triple-immunized individuals who experienced BA.2 breakthrough infection. We demonstrate that sera of these individuals have broadly neutralizing activity against previous VOCs as well as all tested Omicron sublineages, including BA.2 derived variants BA.2.12.1, BA.4/BA.5. Furthermore, applying antibody depletion we showed that neutralization of BA.2 and BA.4/BA.5 sublineages by BA.2 convalescent sera is driven to a significant extent by antibodies targeting the N-terminal domain (NTD) of the spike glycoprotein, whereas their neutralization by Omicron BA.1 convalescent sera depends exclusively on antibodies targeting the receptor binding domain (RBD). These findings suggest that exposure to Omicron BA.2, in contrast to BA.1 spike glycoprotein, triggers significant NTD specific recall responses in vaccinated individuals and thereby enhances the neutralization of BA.4/BA.5 sublineages. Given the current epidemiology with a predominance of BA.2 derived sublineages like BA.4/BA.5 and rapidly ongoing evolution, these findings are of high relevance for the development of Omicron adapted vaccines.


Subject(s)
Breakthrough Pain , COVID-19
4.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.04.01.486695

ABSTRACT

Omicron is the evolutionarily most distinct SARS-CoV-2 variant (VOC) to date and displays multiple amino acid alterations located in neutralizing antibody sites of the spike (S) protein. We report here that Omicron breakthrough infection in BNT162b2 vaccinated individuals results in strong neutralizing activity not only against Omicron, but also broadly against previous SARS-CoV-2 VOCs and against SARS-CoV-1. We found that Omicron breakthrough infection mediates a robust B cell recall response, and primarily expands preformed memory B cells that recognize epitopes shared broadly by different variants, rather than inducing new B cells against strictly Omicron-specific epitopes. Our data suggest that, despite imprinting of the immune response by previous vaccination, the preformed B cell memory pool has sufficient plasticity for being refocused and quantitatively remodeled by exposure to heterologous S protein, thus allowing effective neutralization of variants that evade a previously established neutralizing antibody response.


Subject(s)
Breakthrough Pain , Severe Acute Respiratory Syndrome
5.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1462948.v1

ABSTRACT

The recent surge of infections with SARS-CoV-2 Omicron subvariants of prompted countries, such as Israel and Germany, to call for an accelerated booster vaccination program for health care workers and vulnerable groups in order to limit disease and transmission. However, detailed studies analyzing the correlates of protection over time after second booster vaccination are still lacking. Here, we examined the production of Spike receptor binding domain (RBD) -specific antibodies as well as neutralizing antibodies from subjects before, two, and seven weeks after the second booster vaccination against the D614G harboring B.1 variant as well as the variants of concern (VOC) Alpha, Beta, Delta in addition to Omicron BA.1 and BA.2. The second booster vaccination resulted in an increase in anti-RBD IgG antibodies and neutralizing antibodies against B.1 in all individuals tested, then remained nearly constant over the observed period. In addition, a 2nd booster resulted in an increase in neutralizing antibodies against VOCs Alpha, Beta, Delta, and Omicron subvariants BA.1 and BA.2. However, compared to B.1 the neutralizing capacity of both Omicron subvariants remained low. Neutralization of Omicron BA.1 and BA.2 was limited even after the 2nd booster vaccination indicating that an antibody-mediated protection against infection with this VOC is unlikely, as evidenced by the fact that three of the quadruple vaccinated individuals became infected with BA.1 during the course of the study. Moreover, T cell activation measured by interferon gamma release was detected in all subjects after the 2nd booster vaccination. This may offer protection suggesting protection against severe disease. T-cell activation was independent of the age of the subjects, but correlated with the amount of Spike-specific antibodies. Interestingly, in subjects with Omicron BA.1 breakthrough infection, a significant increase in neutralizing antibodies to all tested VOCs studied was observed after the 2nd booster vaccination. Taken together, our data suggest inferior protection from breakthrough infection with the Omicron subvariant BA.1 when compared to other VOCs after four vaccine doses.

6.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.07.21267432

ABSTRACT

Due to numerous mutations in the spike protein, the SARS-CoV-2 variant of concern Omicron (B.1.1.529) raises serious concerns since it may significantly limit the antibody-mediated neutralization and increase the risk of reinfections. While a rapid increase in the number of cases is being reported worldwide, until now there has been uncertainty about the efficacy of vaccinations and monoclonal antibodies. Our in vitro findings using authentic SARS-CoV-2 variants indicate that in contrast to the currently circulating Delta variant, the neutralization efficacy of vaccine-elicited sera against Omicron was severely reduced highlighting T-cell mediated immunity as essential barrier to prevent severe COVID-19. Since SARS-CoV-2 Omicron was resistant to casirivimab and imdevimab, genotyping of SARS-CoV-2 may be needed before initiating mAb treatment. Variant-specific vaccines and mAb agents may be required to treat COVID-19 due to Omicron and other emerging variants of concern.


Subject(s)
COVID-19
7.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.11.09.21266110

ABSTRACT

The elderly residing in long-term care facilities (LTCFs) are a group at high risk for COVID-19. Hence, monitoring of the vaccine-based immunity has a pivotal role in identifying strategies to provide optimal protection in this population. We examined the immune response to the mRNA vaccine BNT162b2 against COVID-19 five to seven months after completing a two-dose regimen. We determined significantly lower anti-SARS-CoV-2 antibody titers in 298 SARS-CoV-2 naive residents who were at least 75 years of age (mean 51.60 BAU/ml) (median age 87 years, range 75 to 101 years) when compared to health care workers (HCWs) aged 18 to 70 years (mean 156.99 BAU/ml, p < 0.001). Of the SARS-CoV-2 naive residents, 29 had detectable neutralizing antibodies against the Delta variant (9.5%), and 14 of those (48.3%) only had a borderline titer of 1:10. Of 114 HCWs, 36 (31.6%) had detectable neutralizing antibodies. In a group of 14 elderly residents who had had a PCR-confirmed breakthrough infection, the mean antibody titer was significantly higher than in the other two groups (3199.65 BAU/mL) (p < 0.001), and 12 (85.7%) had detectable neutralizing antibodies against the Delta variant. Our data demonstrate that 90.5% of elderly residents of LTCFs had no detectable neutralization-competent antibodies against the dominant Delta variant five to seven months after vaccination, and that neutralizing antibody titers were restored following a break-through infection. Our results suggest that both residents and health care workers in LTCFs would benefit from a booster vaccine six months after completing the two-dose schedule or earlier.


Subject(s)
COVID-19 , Breakthrough Pain
SELECTION OF CITATIONS
SEARCH DETAIL